POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Foreign language - English

Course

Field of study Year/Semester

Green Energy 1/1

Area of study (specialization) Profile of study

- general academic
Level of study Course offered in

Second-cycle studies English

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

30 0

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Hanna Nowak, MA

Centre of Languages and Communication of

Poznan University of Technology

e-mail: hanna.nowak@put.poznan.pl

tel. 61 665 2613

Prerequisites

Language competence compatible with level B2 (CEFR); knowledge of selected field-specific (energy) vocabulary; ability to use various sources of information. Readiness to follow group work rules and to work in a team.

Course objective

To develop the student's ability to use academic and field-specific (energy) language effectively in speech and writing, in a number of complex tasks. To develop the student's ability to analyze critically field-specific texts.

To encourage build-up of field-specific vocabulary.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

The student understands the differences between written and spoken forms of English. The student has acquired field-specific vocabulary related to renewable energy sources and sustainable growth, smart and environmentally-friendly solutions - intelligent home, passive house, modern cars.

Skills

The student is able to write an abstract of their diploma thesis or a summary of a scientific article, using an appropriate linguistic and grammatical repertoire. The student is able to give a talk on a field-specific or popular science topic, and discuss general and field-specific issues, analyzing constraints and feasible solutions. The student is able to understand and analyze international, field-specific literature, assess the merit of resource materials, and use incomplete/partially unreliable resources. The student is able to participate in a discussion on a field specific/professional topic, using 'ad rem' arguments.

Social competences

The student is able to communicate effectively in general and field-specific areas, and communicate in English in public.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Regular assessment of in-class performance and home assignments: individual and/or group presentations, written tasks. One written quiz featuring a battery of tests. Successful completion of assignments as above and a 60% score on the quiz are required to obtain a pass.

Programme content

Writing abstracts or summaries, giving presentations. Topics: modern ways of generating electrical energy. Smart solutions: intelligent home, passive house, modern cars. Conventional and modern power plants, coal fired power stations, wind power, solar systems, hydropower, nuclear power plants. Environmental issues: climate change, sustainability, conservation, waste management. Energy storage technologies. Occupational Health and Safety. Current issues and developments in Green Energy.

Teaching methods

Classroom activities guided by the communicative approach, using multimedia

Bibliography

Basic

Internet sources: Science Daily, Science Direct, MIT online courses-learn.edx.course, howstuffworks,

Dubis, A., Firganek, J., English through Electrical and Energy Engineering, ed. 1, Publishing House of Kraków University of Technology, Kraków 2006.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Additional

Brieger, N, and Pohl, A. 2002. Technical English Vocabulary and Grammar. Summertown: Summertown Publishing.

Campbell, S. 2009. English for the Energy Industry.Oxford: Oxford University Press.

Esteras, S. R. and Fabré, E. M. 2007. Professional English in Use for Computers and the Internet. ICT. Cambridge: Cambridge University Press.

Murphy, R. 2012. English Grammar in Use. Cambridge: Cambridge University Press. (all levels)

Oshima, A. and Hogue, A. 2006. Writing Academic English. White Plains: Pearson Education, Inc.

Opracowanie zbiorowe. 2014. English for Academics. Book 1. Cambridge: Cambridge University Press. Unit 3, pp. 147-154

Breakdown of average student's workload

	Hours	ECTS
Total workload	55	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for tutorials,	25	1,0
preparation for tests, team projects) 1		

¹ delete or add other activities as appropriate